Shandong Luba Chemical Co.,Ltd
Beijing Multigrass Formulation Co., Ltd.

The Regulation of Nanotechnology in Agricultureqrcode

Aug. 8, 2018

Favorites Print Aug. 8, 2018

The Regulation of Nanotechnology in Agriculture


By Benedette Cuffari
 
While nanoparticles can be found in a wide variety of natural sources including sand, ocean spray, volcanic ash, dust, and even blood borne proteins, the manipulation and engineering of various bulk materials has gained a tremendous amount of interest over the last several years.
 
When engineered to be nanosized, these materials can exhibit exceptional optical, magnetic and electrical properties, to name a few, that often significantly exceed the properties of their bulk counterparts. The beneficial application of nanotechnology to the electronic, agricultural and energy industry is only expected to continue as this technology continues to be applied to industries across the world. While the benefits of nanotechnology to these industries are evident, the potential impact that this technology poses to the environment and human health are critical to evaluate and regulate in an effort to prevent irreversible harm.
 
Regulation of Nanotechnology in Agriculture
 
The rising demand for the agricultural industry to maximize agricultural output has pushed this industry to incorporate the use of nanoscale materials. More specifically, nanotechnology in the agricultural industry has shown impressive potential in terms of improving seed germination, plant growth, and protection through a controlled release of agrochemicals and an overall reduction in the use of fertilization that subsequently minimizes the potential loss of nutrients.
 
As the application of this technology becomes a more realistic option for this industry, there has been a growing concern on the possible human and environmental health implications that may occur as a result. For example, the exposure route of particular concern involves the potential bioaccumulation of nano-enhanced materials within the environment and food chain that can eventually reach human consumption. In an effort to address this concern, the agricultural industry has exercised a considerable amount of research into development of “green nanotechnology,” which is expected to address the potential environmental challenges of nanotechnology within this industry.
 
Nanosensors for Monitoring Pesticides
 
A growing concern regarding the determination of both the chemical and physical properties of fertilizers, herbicides, pesticides, insecticides, heavy metals, organic pollutants and pathogens, particularly when present at the nanolevel, has prompted the development of nanosensors for this exact purpose. Capable of detecting particles with a dimension that is greater than 100 nanometers (nm), these nanosensors are expected to offer researchers an increased sensitivity at a rapid detection rate as compared to traditional detection techniques.
 
Additionally, researchers are particularly interested in the potential of these nanosensors to investigate the following properties of plants:
 
Bacterial, viral and fungal pathogen populations
Moisture levels
Soil pH
Fertility
Temperature
Nutrient status and concentrations
Sustainable growth
Improved yield production
 
Social Regulation of Nanotechnology in Agriculture
 
The United States Environmental Protection Agency (EPA) requires that all pesticides used within the agricultural industry are reviewed as a result of the Federal Insecticide, Fungicide and Rodenticide Act (FIFRA). Since 2016, the EPA has been focused on investigating whether nanopesticides exhibit greater benefits than traditional pesticides, as well as the potential risks that these materials may cause to the environment and human health. Under this law, the EPA regulates the use of these nanomaterials through the following parameters:
 
Experimental use permits (EUP)
Setting of requirements for pre-registration testing
Registration requirements
       o Development of data required
       o Set limits on the use and handling
Post-registration testing requirements
Enforcement of proceedings against unregistered nanopesticides or those found to cause unreasonable adverse effects on human health or the environment

Since 2011 when the European Commission published an official definition for what a nanomaterial is, a considerable amount of resources has been dedicated towards ensuring the safety of these materials to both humans and the environment. In regards to the agricultural industry, the Plant Protection Products Regulation (EC 1107/2009) is responsible for regulating the use of pesticides of all shapes, sizes and physical states, thereby requiring nanomaterials to be assessed in the same way in which any other active ingredient would be investigated for potential toxicity and environmental fate1.
 
Novel Nanotechnology Regulations in the U.S.
 
The EPA’s Toxic Substances Control Act (TSCA) considers all materials of the nanoscale as chemical substances that must be comprehensively investigated and regulated. On August 14, 2017, the EPA issued the highly anticipated Working Guidance for its Final Nanotechnology Reporting and Recordkeeping Requirements Rule. Through this rule, the EPA is able to acquire basic data on the use, exposure and potential hazards that are associated with the manufacturing and processing of nanomaterials.  For example, the TSCA requires that all nanomaterials used for commercial purposes must notify the EPA of certain information, of which includes:
 
Chemical identity
Production volume
Methods of manufacture
Processing information
Use
Exposure and release
Available health and safety data
 
In the event that a nanomaterial exhibits chemical properties that possess an unreasonable risk to human health or the environment, the EPA is capable of taking the necessary action required to prevent harm.

References

“At last: EPA promulgates nanomaterial reporting rule” – Environmental Defense Fund
“Control of nanoscale materials under the Toxic Substances Control Act” – The United States Environmental Protection Agency
Iavicoli, I., Leso, V., Beezhold, D. H., & Shvedova, A. A. (2017). Nanotechnology in agriculture: Opportunities, toxicological implications and occupational risks.Toxicology and Applied Pharmacology 329, 96-11. DOI: 10.1016/j.taap.2017.05.025.
“The adequacy of FIFRA to regulate nanotechnology-based pesticides” – America Bar Association
 
Favorites Print
Source: AZoM.com

Guest

United States

Picture 0/1200

More from AgroNews

Magazine

  • 2018 CRO & CRAO Manual 2018 India Pesticide Suppliers Guide
  • 2018 Latin America Focus 2018 Seed Special
  • 2018 Biologicals Special 2018 Formulation & Adjuvant Technology

Comment  

Picture 0/1200

Subscribe to daily email alerts of AgroNews.