Co-infection, caused by multiple pathogen attacks on an organism, can lead to disease development or immunity. This complex interaction can be synergetic, co-existing, or antagonistic, ultimately influencing disease severity. The interaction between fungus, bacterium, and virus (three kingdom pathogens) is most prevalent. However, the underlying mechanisms of co-infection need to be explored further.
In this study, researchers investigated the co-infection phenomenon in rice plants exposed to multiple pathogen species, specifically Rice necrosis mosaic virus (RNMV) and rice blast fungus (Magnaporthe oryzae, MO), bacterial leaf blight (Xanthomonas oryzae pv. oryzae, XO) or Cucumber mosaic virus (CMV).
The research showed that RNMV interacts synergistically with MO, XO, or CMV, increasing pathogen growth and lesion size. These findings suggest positive synergy in RNMV co-infections with three kingdom pathogens, increasing accumulation and symptoms.
Additionally, to investigate the role of RNAi in pathogen synergism, researchers analyzed rice mutant lines deficient in RNA-dependent RNA polymerase 1 (OsRDR1) or 6 (OsRDR6). Notably, they observed the loss of synergy in each mutant line, highlighting the crucial role of OsRDR1 and OsRDR6 in maintaining the positive interaction between RNMV and three kingdom pathogens.
Hence, the study emphasized the role of the RNA silencing pathway in the intricate landscape of pathogen interactions; the study's outcome could be applied to understand the plant defense response to improve crop yields.
Learn more at ScienceDirect.
Find this article at: http://news.agropages.com/News/NewsDetail---51374.htm | |
Source: | Agropages.com |
---|---|
Web: | www.agropages.com |
Contact: | info@agropages.com |