Jun. 3, 2022
Glyphosate is a dominant organophosphate herbicide that inhibits 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) of the shikimate pathway. Glyphosate is extensively applied since manufactured, which has led to the emergence of various glyphosate-resistant crops and weeds. However, the molecular mechanism of many glyphosate-resistance machineries remains unclear.
Recently, the upregulated expression of two homologous aldo-keto reductases (AKRs), designated as AKR4C16 and AKR4C17, were found to contribute to the glyphosate resistance in Echinochloa colona. This represents the first naturally evolved glyphosate-degrading machinery reported in plants.
Here, the researchers report the three-dimensional structure of these two AKR enzymes in complex with cofactor by performing X-ray crystallography. Furthermore, the binding-mode of glyphosate were elucidated in a ternary complex of AKR4C17. Based on the structural information and the previous study, the researchers proposed a possible mechanism of action of AKR-mediated glyphosate degradation. In addition, a variant F291D of AKR4C17 that was constructed based on structure-based engineering showed a 70% increase in glyphosate degradation.
In conclusion, these results demonstrate the structural features and glyphosate-binding mode of AKR4C17, which increases our understanding of the enzymatic mechanism of glyphosate bio-degradation and provides an important basis for the designation of AKR-based glyphosate-resistance for further applications.
Read more at https://www.sciencedirect.com/science/article/abs/pii/S0304389422009815
Subscribe Email: | * | |
Name: | ||
Mobile Number: | ||
0/1200