English 
搜索
Hebei Lansheng Biotech Co., Ltd. ShangHai Yuelian Biotech Co., Ltd.

Rothamsted Research is granted permission by Defra to carry out field trial with GM wheat plantsqrcode

Feb. 3, 2017

Favorites Print
Forward
Feb. 3, 2017

Rothamsted Research
United Kingdom  United Kingdom
Follow


 
Rothamsted Research, which receives strategic funding from BBSRC, submitted an application on 3rd November 2016 to the Department for Environment, Food and Rural Affairs (Defra) for permission to carry out GM field trials on the Rothamsted Farm between 2017 and 2019. The risk assessment was reviewed by the independent Advisory Committee on Releases to the Environment (ACRE), and a 48-day public consultation was carried out by Defra. ACRE is satisfied that all scientific issues raised by the public with respect to this application have been addressed. During this period and in addition to the formal consultation run by ACRE, Rothamsted Scientists have also spoken to and answered questions directly from the public, and special interest groups that have been interested in the research project and the trial.

Scientists at Rothamsted Research, in collaboration with researchers at the University of Essex and Lancaster University, have developed wheat plants that can carry out photosynthesis more efficiently i.e. convert light energy into plant biomass more efficiently. This trait has the potential to result in higher yielding plants. The purpose of the proposed trial is to evaluate the performance of the engineered plants in the field.

Ensuring food security is a major challenge given the projected need to increase world food production by 40% in the next 20 years and 70% by 2050. Wheat is one of the major grain crops worldwide and provides approximately one-fifth of the total calories consumed globally. However, wheat yields have reached a plateau in recent years and predictions are that yield gains will not reach the level required to feed the 9 billion population predicted for 2050. Traditional breeding and agronomic approaches have maximised light capture and allocation to the grain. A promising but as yet-unexploited route to increase wheat yields is to improve the efficiency by which energy in the form of light is converted to wheat biomass.

Professor Christine Raines, Head of the School of Biological Sciences at the University of Essex and principal investigator for this research project, said: “The efficiency of the process of photosynthesis integrated over the season is the major determinant of crop yield. However, to date photosynthesis has not been used to select for high yielding crops in conventional breeding programmes and represents an unexploited opportunity. But there is now evidence that improving the efficiency of photosynthesis by genetic modification is one of the promising approaches to achieve higher wheat yield potential.”

“In this project we have genetically modified wheat plants to increase the efficiency of the conversion of energy from sunlight into biomass. We have shown that these plants carry out photosynthesis more efficiently in glasshouse conditions. One of the steps in photosynthesis shown to limit this process is carried out by the enzymesedoheptulose-1,7-biphosphatase (SBPase). We have engineered GM wheat plants to produce increased levels of SBPase by introducing an SPBase gene from Brachypodium distachyon (common name stiff brome), a plant species related to wheat and used as a model in laboratory experiments” Christine added.

Dr Elizabete Carmo-Silva, co-investigator in this project at Lancaster University, added: “We have produced two types of plants, one in which two extra copies of SBPase are functional and one in which six extra copies of SBPase are functional. During the field trial, we will measure the photosynthetic efficiency of the plants in the field and we will determine total aboveground plant biomass and grain yield on an area basis at full maturity. We will also measure the number of wheat ears on an area basis and the grain number and weight per ear. From these data we will estimate the harvest index, which is the proportion of biomass allocated to the grain.”

Dr Malcolm Hawkesford, Head of the Plant Biology and Crop Science Department at Rothamsted Research and lead scientist at Rothamsted for this trial said: “We will perform the proposed controlled experiment in our already established facilities here at Rothamsted Research. This trial will be a significant step forward as we will be able to assess in ‘real environmental conditions’ the potential of these plants to produce more using the same resources and land area as their non-GM counterparts. These field trials are the only way to assess the viability of a solution that can bring economic benefits to farmers, returns to the UK tax payer from the long-term investment in this research, benefits to the UK economy as a whole and the environment in general. Here at Rothamsted we are very happy to provide any further information and explanation on this area of research”.

More information on this project can be found on our dedicated Questions and Answers Section on the Rothamsted Research website at http://www.rothamsted.ac.uk/our-science/efficient-photosynthesis-gm-wheat-trial


0/1200

More from AgroNewsChange

Hot Topic More

I wanna post a press Comment

Subscribe 

Subscribe Email: *
Name:
Mobile Number:  

Comment  

0/1200

 

NEWSLETTER

Subscribe AgroNews Daily Alert to send news related to your mailbox